Metal-Free Polymerizations of Microencapsulated Activated Alkynes for Autonomous Damage Visualization of Polymers

22 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The development of autonomous materials with desired performance and built-in visualizable sensing units is of great academic and industrial significance. Although a wide range of damage indication methods have been reported, the “turn-on” sensing mechanism by damaging events based on microcapsule systems, especially those relying on chemical reactions to elicit a chromogenic response, are still very limited. Herein, a facile and metal-free polymerization route with an interesting reaction-induced coloration effect is demonstrated. Under the catalysis of 1,4-diazabicyclo[2.2.2]octane (DABCO), the polymerizations of difunctional or trifunctional activated alkynes proceed very quickly at 0 oC in air. A series of polymers composed of stereoregular enyne structure (major unit) and divinyl ether structure (minor unit) are obtained. Both the catalyst and monomers are colorless while the polymerized products are deep-colored. This process can be applied for the damage visualization of polymers using the microencapsulation technique. Microcapsules containing the reactive alkyne monomer are prepared and mixed in a DABCO-dispersed polymer film. The mechanical damage of this composite film can be readily visualized once the reaction is initiated from the ruptured microcapsules. Moreover, the newly formed polymer automatically sealed the cracks with an additional protection function.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.