Triplet Dynamic Nuclear Polarization of Guest Molecules through Induced Fit in a Flexible Metal-Organic Framework

19 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Dynamic nuclear polarization utilizing photoexcited triplet electrons (triplet-DNP) has great potential for room-temperature hyperpolarization of nuclear spins. However, the polarization transfer to molecules of interest remains a challenge due to the fast spin relaxation and weak interaction with target molecules at room temperature in conventional host materials. Here, we demonstrate the first example of DNP of guest molecules in a porous material at around room temperature by utilizing the induced-fit-type structural transformation of a crystalline yet flexible metal-organic framework (MOF). In contrast to the usual hosts, 1H spin-lattice relaxation time becomes longer by accommodating a pharmaceutical model target 5-fluorouracil as the flexible MOF changes its structure upon guest accommodation to maximize the host-guest interactions. Combined with triplet-DNP and cross-polarization, this system realizes an enhanced 19F-NMR signal of guest target molecules at around room temperature.

Keywords

dynamic nuclear polarization
nuclear magnetic resonance
photoexcited triplet
metal-organic frameworks
soft porous crystals

Supplementary materials

Title
Description
Actions
Title
Triplet Dynamic Nuclear Polarization of Guest Molecules through Induced Fit in a Flexible Metal-Organic Framework
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.