Transformer Neural Network-Based Molecular Optimization Using General Transformations

18 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Molecular optimization aims to improve the drug profile of a starting molecule. It is a fundamental problem in drug discovery but challenging due to (i) the requirement of simultaneous optimization of multiple properties and (ii) the large chemical space to explore. Recently, deep learning methods have been proposed to solve this task by mimicking the chemist's intuition in terms of matched molecular pairs (MMPs). Although MMPs is a typical and widely used strategy by medicinal chemists, it offers limited capability in terms of exploring the space of solutions. There are more options to modify a starting molecule to achieve desirable properties, e.g. one can simultaneously modify the molecule at different places including changing the scaffold. This study trains the same Transformer architecture on different datasets. These datasets consist of a set of molecular pairs which reflect different types of transformations. Beyond MMP transformation, datasets reflecting general transformations are constructed from ChEMBL based on two approaches: Tanimoto similarity (allows for multiple modifications) and scaffold matching (allows for multiple modifications but keep the scaffold constant) respectively. We investigate how the model behavior can be altered by tailoring the dataset while keeping the same model architecture. Our results show that the models trained on differently prepared datasets transform a given starting molecule in a way that it reflects the nature of the dataset used for training the model. These models could complement each other and unlock the capability for the chemists to pursue different options for improving a starting molecule.

Keywords

molecular optimization
matched molecular pairs
transformer
tanimoto similarity
scaffold
ADMET

Supplementary materials

Title
Description
Actions
Title
Supplementary figures and tables
Description
Supplementary figures and tables
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.