Explainable Graph Neural Networks for Organic Cages

18 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The development of accurate and explicable machine learning models to predict the properties of topologically complex systems is a challenge in material science. Porous organic cages, a class of polycyclic molecular materials, have potential application in molecular separations, catalysis and encapsulation. For most applications of porous organic cages, having a permanent internal cavity in the absence of solvent, a property termed “shape persistency” is critical. Here, we report the development of Graph Neural Networks (GNNs) to predict the shape persistence of organic cages. Graph neural networks are a class of neural networks where the data, in our case that of organic cages, are represented by graphs. The performance of the GNN models was measured against a previously reported computational database of organic cages formed through a range of [4+6] reactions with a variety of reaction chemistries. The reported GNNs have an improved prediction accuracy and transferability compared to random forest predictions. Apart from the improvement in predictive power, we explored the explicability of the GNNs by computing the integrated gradient of the GNN input. The contribution of monomers and molecular fragments to the shape persistence of the organic cages could be quantitatively evaluated with integrated gradient. With the added explicability of the GNNs, it is possible not only to accurately predict the property of organic materials, but also to interpret the predictions of the deep learning models and provide structural insights to the discovery of future materials.

Keywords

organic cages
molecular design
porosity
materials discovery
machine learning

Supplementary materials

Title
Description
Actions
Title
Explainable Graph Neural Networks for Organic Cages
Description
Supporting Information
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.