Dramatic improvement of NO reduction activity via reversible re-dispersion of CeO2 nanoparticles into Ce+3 atoms on alumina under high temperature reactive treatment

15 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Ceria nanoparticles supported on gamma-alumina prepared via wet impregnation and sourced commercially have low activity for industrially relevant NO reduction by CO in the presence of steam. These supports contain ceria nanoparticles as well as small (~1%) amount of Ce atomically dispersed and anchored by penta-Al sites. We discovered that treatment of these catalysts at temperatures ~750-950 ºC under the flow of CO and NO in the presence of steam, which typically leads to catalyst deterioration and sintering, in fact, leads to dispersion of ceria nanoparticles into isolated Ce+3 atoms. We extensively characterize them with XPS, FTIR and HAADF-STEM imaging. Their presence changes the alumina surface, as evidenced by XPS and FTIR with probe molecules. Ce+3 ions show dramatically enhanced NO reduction ability in the presence of CO and steam. Infra-red studies reveal close interaction of NO molecules on Ce+3/Alumina surfaces with the formation of N2O species. Heating these samples in oxygen (in wet or dry streams) at 800 ºC and above leads to coalescence of Ce+3 into CeO2 nanoparticles, resulting in reversible loss of activity. Further, reactive treatment of CeO2/Al2O3 under high temperature reaction conditions restores Ce+3 cations as well as catalytic activity. Our study shows reversible redispersion of ceria into isolated Ce+3 cations under conditions where typical catalyst sintering is generally assumed to occur and suggests a pathway to utilize these materials as supports for more effective catalysis. Indeed, supporting only 0.1-0.5 wt% Rh on these CeAl supports, shows synergies between Rh and atomically dispersed Ce ions with excellent activity and stability for NO reduction with CO.

Keywords

ceria
alumina
ceria alumina
atomically dispersed ceria on alumina
high temperature reactive treatment

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.