Abstract
Here, an extended – gate field effect transistor (EGFET) pH microsensor was developed for use in fast and sensitive pH measurement applications. The system consisted of two components; a pH sensitive modified gold electrode and a simple and cheap metal oxide semiconductor field-effect transistor (MOSFET). Polypyrrole, a semiconductor and pH responsive polymer, was formed by electropolymerization of pyrrole monomer at the surface of the gold electrode in galvostanic mode. Then, measurements were made in PBS at different pH values using the pH sensitive electrode. In this context, the pH sensitivity of polypyrrole with respect to electropolymerization and incubation time were studied. According to the results, the EGFET pH microsensor formed by 4-min pyrrole electropolymerization showed at pH 6-12 the highest pH sensitivity with 67 mV/pH