Abstract
Zintl compounds exhibit promising thermoelectric properties because of the feasibility of the chemical tuning of their electrical and thermal transport. While most Zintl pnictides are known to show p-type polarity, recent developments in high-performance n-type Mg3Sb2-based thermoelectric materials have encouraged further identification of n-type Zintl pnictides. In this study, we demonstrate the bipolar dopability of the Zintl arsenide Eu5In2As6. The electrical resistivity at 300 K with n-type polarity was decreased to 7.6 x 10^-1 ohmcm using La as an electron dopant. In contrast to the relatively high resistivity of n-type Eu5In2As6, the p-type resistivity at 300 K was decreased to 5.9 x 10^-3 ohmcm with a carrier concentration of 2.8 x 10^20 /cm3 using Zn as a hole dopant. This doping asymmetry is discussed in terms of the weighted mobility of electrons and holes. Furthermore, a very low lattice thermal conductivity of 0.7 W/mK was observed at 773 K, which is comparable to that of the Sb-containing analogue Eu5In2Sb6. The dimensionless figure of merit ZT = 0.29 at 773 K for Zn-doped p-type Eu5In2As6. This study shows that bipolar dopable Eu5In2As6 can be a platform to facilitate a better understanding of the doping asymmetry in Zintl pnictides.