Abstract
The encapsulation of genetic polymers inside lipid bilayer compartments is a vital step in the emergence of cell-based life. However, even though acidic conditions promote many reactions required for generating prebiotic building blocks, prebiotically-relevant lipids tend to form denser aggregates at acidic pHs rather than prebiotically useful vesicles that exhibit sufficient solute encapsulation. Here we describe how dehydration/rehydration (DR) events, a prebiotically-relevant physicochemical process known to promote polymerization reactions, can remodel dense lipid aggregates into thin-walled vesicles capable of RNA encapsulation even at acidic pHs. Furthermore, DR events appears to favor the encapsulation of RNA within thin-walled vesicles over more lipid-rich vesicles, thus conferring such vesicles a selective advantage.
Supplementary materials
Title
Supporting information pdf
Description
Supporting information including 11 figures for manuscript "Dehydration Enhances Prebiotic Lipid Remodeling and Vesicle Formation in Acidic Environments"
Actions