Abstract
ABSTRACT: More than a century old, sulfonium ions are still intriguing species in the landscape of organic chemistry. On one hand they have found broad applications in organic synthesis and material science, but on the other hand, while isoelectronic to the ubiquitous tertiary phosphine ligands, their own coordination chemistry has been neglected for the last three decades. Here we report the synthesis and full characterization of the first Rh(I) and Pt(II) complexes of sul-fonium. Moreover, for the first time, the coordinating ability of an aromatic sulfonium has been established. A thorough computational analysis of the exceptionally short S-Rh bonds obtained attests for the strongly π-accepting nature of sul-fonium cations and places them among the best π-acceptor ligands available today. Our calculations also show that when embedded within a pincer framework their π-acidity is enhanced. Therefore, in addition to the stability and modularity that these frameworks offer, our pincer complexes might open the way for sulfonium cations to become powerful tools in π-acid catalysis.