Untethering sparteine: 1,3-diamine ligand for asymmetric synthesis in water

29 October 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chiral ligands are the toolbox for asymmetric synthesis to access 3D molecular world. Enabling efficient asymmetric reaction in water is a big challenge. As moisture/air stable and strong binding moieties, amines, compared to imine and phosphine ligands, are ideal candidates to accommodate asymmetric transformations in water. Known amine ligands like Proline analogues and Cinchona alkaloids showed excellent asymmetric induction. Sparteine, an alkaloid studied originated in 1968, had never been considered as a privileged catalyst due to its structure defection which led to poor reaction compatibility and unsatisfactory stereoselectivity. Here, we report the design of a chiral diamine catalyst untethering one of the sparteine rings. The diamine catalyst was easily accessed in two steps on 100 gram-scale. This chiral ligand was proved to be efficient for addition reactions in water providing products with excellent yields and enantiomeric ratios. This pluripotent catalyst has also shown good reactivity/enantioselectivity under organocatalysis, Cu and Pd-catalysed conditions. We anticipate that the ligand would allow further development of other catalysts for important yet challenging green stereoselective transformations.

Keywords

Privileged Chiral Ligand
Sparteine
Asymmetric Synthesis

Supplementary materials

Title
Description
Actions
Title
Untethering sparteine: 1,3-diamine ligand for asymmetric synthesis in water
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.