Papyrus - A large scale curated dataset aimed at bioactivity predictions

01 November 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

With the recent rapid growth of publicly available ligand-protein bioactivity data, there is a trove of viable data that can be used to train machine learning algorithms. However, not all data is equal in terms of size and quality, and a significant portion of researcher’s time is needed to adapt the data to their needs. On top of that, finding the right data for a research question can often be a challenge on its own. As an answer to that, we have constructed the Papyrus dataset (DOI: 10.4121/16896406), comprised of around 60 million datapoints. This dataset contains multiple large publicly available datasets such as ChEMBL and ExCAPE-DB combined with several smaller datasets containing high quality data. The aggregated data has been standardised and normalised in a manner that is suitable for machine learning. We show how data can be filtered in a variety of ways, and also perform some baseline quantitative structure-activity relationship analyses and proteochemometrics modeling. Our ambition is this pruned data collection constitutes a benchmark set that can be used for constructing predictive models, while also providing a solid baseline for related research.

Keywords

Papyrus
Curated Dataset
Machine Learning
Standardisation
Cheminformatics
Bioinformatics
Affinity
Bioactivity
Normalisation

Supplementary materials

Title
Description
Actions
Title
Papyrus Supplementary Tables
Description
Contains the information needed to reproduce the data repair, patent mapping and filtering steps as described in the preprint.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.