The Orbital Origins of Chemical Bonding in Phase-Change Materials

29 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Layered phase-change materials in the Ge–Sb–Te-system are widely used in data storage and are the subject of intense research to understand the elusive quantum-chemical origin of their unique properties. To uncover the nature of the underlying periodic wavefunction, we study the interacting atomic orbitals including their phase information as revealed by crystal orbital bond index (COBI) and fragment crystal orbital (FCO) analysis. In full accord with previous and also new findings based on projected force constants (pFC), we demonstrate the decisive role of multicenter bonding along straight atomic connectivities such as Te–Ge–Te and Te–Sb–Te. While the here found multicenter bonding resembles well-established three-center four-electron bonding in molecules, its solid-state manifestation beyond a molecular motif leads to distinct longe-range consequences, thus serving to contextualize the aforementioned material properties usually termed “metavalent”. For example, we suggest multicenter bonding to be the origin of their astonishing bond-breaking and also phase-change behavior. As a hole-in-one, multicenter bonding immediately explains the too small “van der Waals” gaps between individual layers since multicenter bonding forces these gaps to shrink below the nonbonding Te–Te distances.

Keywords

phase-change materials
metavalent bonding
multicenter bonding
wavefunction analysis

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.