DiSCoVeR: a Materials Discovery Screening Tool for High Performance, Unique Chemical Compositions

27 October 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We present Descending from Stochastic Clustering Variance Regression (DiSCoVeR), a Python tool for identifying high-performing, chemically unique compositions relative to existing compounds using a combination of a chemical distance metric, density-aware dimensionality reduction, and clustering. We introduce several new metrics for materials discovery and validate DiSCoVeR on Materials Project bulk moduli using compound-wise and cluster-wise validation methods. We visualize these via multiobjective Pareto front plots and assign a weighted score to each composition where this score encompasses the trade-off between performance and density-based chemical uniqueness. We explore an additional uniqueness proxy related to property gradients in chemical space. We demonstrate that DiSCoVeR can successfully screen materials for both performance and uniqueness in order to extrapolate to new chemical spaces.

Keywords

machine learning
uniform manifold approximation and projection
optimization
earth mover's distance
Wasserstein distance
materials informatics
materials discovery
CrabNet
ElMD

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.