In silico investigation of ligand-regulated palladium-catalysed formic acid dehydrative decomposition under acidic conditions

18 October 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In silico investigation of ligand-regulated palladium-catalysed formic acid dehydrative decomposition to carbon monoxide under acidic conditions was conducted. Two types of bidentate tertiary phosphine ligands were selected on the basis of previous experimental study. And the promoting effect of para-toluenesulfonic acid (PTSA) was specifically investigated. The pyridyl group implanted in pytbpx ligand is found to mainly contribute on enhancing the activity of palladium catalyst. The PTSA promoter displays specific role for regenerating active species and supressing dehydrogenation during Pd-pytbpx/Pd-dtbpx catalysed dehydration process. CO releasing process catalysed by Pd-dtbpx also facilitated by adding PTSA. According to the mechanism hereby supposed, introducing electron-withdrawing substitution at para-position of pyridyl rings may further improve the dehydrative decomposition activity of Pd-pytbpx.

Keywords

formic acid
carbon monoxide
dehydration
palladium
dehydrogenation

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Fig. S1-4 and Cartesian coordinate of geometry-optimized structures
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.