Chemodivergent Organolanthanide Catalyzed C-H a-Mono-1 Borylation of Azines

18 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

C-H activation and functionalization of pyridinoid azines is a key transformation forthe synthesis of many natural products, pharmaceuticals, and materials. Reflecting the azinyl nitrogen lone-pair steric repulsion, tendency to irreversibly bind to metal ion catalysts, and the electron-deficient nature of pyridine, C-H functionalization at the important a-position remains challenging. Thus, the development of earth abundant catalysts for the a-selective mono-functionalization of azines is a crucial hurdle for modern chemical synthesis. Here, the selective organolanthanide catalyzed a-mono-borylation of a diverse series of pyridines is reported, affording a valuable precursor for cross-coupling reactions. Experimental and theoretical mechanistic evidence support the formation of a C-H activated η2-lanthanide-azine complex, followed by intermolecular a-mono-borylation via σ-bond metathesis. Notably, varying the lanthanide identity and substrate electronics promotes chemodivergence of the catalytic selectivity: smaller/more electrophilic lanthanide3+ ions and electron-rich substrates favor selective a-C-H functionalization, whereas larger/less electrophilic lanthanide3+ 1 ions and electron poor substrates favor selective B-N bond-forming 1,2-dearomatization. Such organolanthanide series catalytic chemodivergence is, to our knowledge, unprecedented.

Keywords

Functionalization
Borylation
Lanthanides
Chemodivergent
Catalysts
Azines

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting Information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.