Bioorthogonal Photo-Catalytic Activation of an Anti-Cancer Prodrug by Riboflavin

15 October 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Chemotherapies for cancer treatment usually suffer from poor targeting ability and serious side-effects. To improve the treatment efficiency and reduce side effects, photoactivatable chemotherapy has been recently proposed for precise cancer treatment with high spatiotemporal resolution. However, most photoactivatable prodrugs require decoration by stoichiometric photo-cleavable groups, which are only responsive to ultraviolet irradiation and suffer from low reaction efficiency. To tackle these challenges, we herein propose a bioorthogonal photo-catalytic activation strategy with riboflavin as the catalyst for in situ transformation of prodrug dihydrochelerythrine (DHCHE) prodrug into anti-cancer drug chelerythrine (CHE), which can efficiently kill cancer cells and inhibit in vivo tumor growth under light irradiation. Meanwhile, the photo-catalytic transformation from DHCHE into CHE was in situ monitored by green-to-red fluorescence conversion, which can be used for precise control of the therapeutic dose. The photocatalytic mechanism was also fully explored by means of density functional theory (DFT) calculations. We believe this imaging-guided bioorthogonal photo-catalytic activation strategy is promising for cancer chemotherapy in clinical applications.

Keywords

biorthogonal photocatalysis
prodrug
cancer
riboflavin
fluorescence

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Experimental details
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.