Controlling Non-Native B12 Reactivity and Catalysis in the Transcription Factor CarH

15 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Vitamin B12 derivatives catalyze a wide range of organic transformations, but B12-dependent enzymes are underutilized in biocatalysis relative to other metalloenzymes. In this study, we engineered a variant of the transcription factor CarH, called CarH*, that catalyzes styrene C-H alkylation with improved yield and selectivity relative to B12 itself. While the native function of CarH involves transcription regulation via AdoCbl Co(III)-carbon bond cleavage and β-hydride elimination to generate 4’,5’-didehydroadenosine, CarH*-catalyzed styrene alkylation proceeds via non-native oxidative addition and olefin addition coupled with a native-like β-hydride elimination. Mechanistic studies on this reaction echo findings from earlier studies on AdoCbl homolysis under strong cage conditions to suggest that CarH* can enable non-native radical chemistry with improved selectivity relative to B12 itself. These findings lay the groundwork for the development of B12-dependent enzymes as catalysts for a wide range of non-native transformations.

Supplementary materials

Title
Description
Actions
Title
Supporting Information for Controlling Non-Native B12 Reactivity and Catalysis in the Transcription Factor CarH
Description
Supplemental figures, experimental and computational methods, and data for material characterization.
Actions
Title
TOC graphic
Description
TOC graphic for display
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.