Abstract
To achieve optimal performance in gas storage and delivery applications, metal-organic frameworks (MOFs) must combine high gravimetric and volumetric capacities. One potential route to balancing high pore volume with suitable crystal density is interpenetration, where identical nets sit within the void space of one another. Herein, we report an interpenetrated MIL-53 topology MOF, named GUF-1, where one-dimensional Sc(µ2-OH) chains are connected by 4,4’-(ethyne-1,2-diyl)dibenzoate linkers into a material that is an unusual example of an interpenetrated MOF with a rod-like secondary building unit. A combination of modulated self-assembly and grand canonical Monte Carlo simulations are used to optimise the porosity of GUF-1; H2 adsorption isotherms reveal a very high Qst for H2 of 7.6 kJ mol-1 and a working capacity of 41 g L-1 in a temperature-pressure swing system, which is comparable to benchmark MOFs. These results show that interpenetration is a viable route to high performance gas storage materials comprised of relatively simple building blocks.
Supplementary materials
Title
Electronic Supporting Information
Description
Data on synthesis, solvent exchange, flexibility, gas storage (experimental and simulated).
Actions