Multi-State Density Functional Theory for Ground and Excited States

15 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We report a rigorous formulation of multi-state density functional theory (MSDFT) that extends the Kohn-Sham (KS) energy functional for the ground state to a Hamiltonian matrix functional H[D] of the density matrix D in the space spanned by the lowest N adiabatic states. We establish a variational principle of MSDFT, which guarantees that the variational optimization results in a Hamiltonian matrix, whose eigenvalues are the lowest N eigen-energies of the system. We present an explicit expression of H[D] and introduce the correlation matrix functional. Akin to KS-DFT for the ground state, a universal multi-state correlation potential is derived for a two-state system as an illustrative example. This work shows that MSDFT is an exact density functional theory that treats the ground and excited states on an equal footing and provides a framework for practical applications and future developments of approximate functionals for excited states.

Keywords

Excited-state DFT
electronic structures
quantum chemistry
density functional theory

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.