Trends in bulk compressibility of Mo2-xWxBC solid solutions

13 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The Mo2-xWxBC system is of interest as a material with high hardness while maintaining moderate ductility. In this work, synchrotron diffraction experiments are performed on Mo2-xWxBC solid solutions, where x = 0, 0.5, and 0.75, upon hydrostatic compression to ~54 GPa, ~55 GPa, and ~60 GPa, respectively. Trends in bulk modulus, K0, are evaluated by fitting collected pressure-volume data with a third-order Birch-Murnaghan equation of state, finding K0 = 333(9) GPa for Mo2BC, K0 = 335(11) GPa for Mo1:5W0:5BC, and K0 = 343(8) GPa for Mo1:25W0:75BC. While K0 demonstrates a slight increase when Mo is substituted by W, calculated zero pressure unit cell volume, V0, exhibits the opposite trend. The decrease in V0 corresponds to an increase in valence electron density, hardness, and K0. Observations corroborate previously reported computational results and will inform future efforts to design sustainable materials with exceptional mechanical properties.

Keywords

superhard
diffraction
DAC
diamond anvil cell
texture
synchrotron

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.