Abstract
The bacterium Pseudomonas aeruginosa is an opportunistic pathogen in certain organisms, including humans, but can also survive and proliferate in natural and engineered water systems. Microfluidic technology can address hydrodynamic questions related to bacterial contamination of water flow systems and infrastructure. In this work, a microfluidic approach was devised to study the effect of shear stresses on biofilms from a dental unit waterline (DUWL)-isolated P. aeruginosa strain, PPF-1. During application of relevant shear stress levels to DUWLs, the response of the PPF-1 biofilm was observed and compared to a clinical P. aeruginosa reference strain, PAO1. The response measurements were repeated for biofilms
exposed to additional Mg2+ ions. Using a microfluidic approach to transforming optical density maps into three-dimensional images, we applied computational fluid dynamics simulations and determined the critical shear stresses for biofilm sloughing. In the absence of Mg2+, PPF-1 biofilms showed weaker attachment than PAO1 biofilms, resulting in continuous slough/regrowth cycles triggered by applied shear stresses of 1.42 +/- 0.32 Pa. Introducing Mg2+ into the PPF-1 biofilm culture medium seemed to place the biofilm into a viscoplastic mechanical state, thereby increasing mechanical stability, which resulted in elevated tolerances to shear stresses up to a critical value of 5.43 +/- 1.52 Pa. This resulted in a propensity for less frequent but more catastrophic sloughing events like that observed for the PAO1 reference strain. This suggests that in a low ionic environment, biofilms from the PPF-1 strain can result in higher and more continuous ejection of biofilm materials, possibly leading to increased downstream colonization of engineered flow systems.
Supplementary materials
Title
Study of Pseudomonas aeruginosa PPF-1 biofilm formation using microfluidics: effect of magnesium on biofilm detachment in engineered conduits
Description
Estimating local biofilm height and volume from optical density measurements. Shear stresses in dental unit water lines and microchannels as a function of biofilm height profiles, shear stress calculations before and after a sloughing event, references
Actions