Efficiently transforming from values of a function on a sparse grid to basis coefficients

11 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In many contexts it is necessary to determine coefficients of a basis expansion of a function ${f}\left(x_1, \ldots, x_D\right) $ from values of the function at points on a sparse grid. Knowing the coefficients, one has an interpolant or a surrogate. For example, such coefficients are used in uncertainty quantification. In this chapter, we present an efficient method for computing the coefficients. It uses basis functions that, like the familiar piecewise linear hierarchical functions, are zero at points in previous levels. They are linear combinations of any, e.g. global, nested basis functions $\varphi_{i_k}^{\left(k\right)}\left(x_k\right)$. Most importantly, the transformation from function values to basis coefficients is done, exploiting the nesting, by evaluating sums sequentially. When the number of functions in level $\ell_k$ equals $\ell_k$ (i.e. when the level index is increased by one, only one point (function) is added) and the basis function indices satisfy ${\left\lVert\mathbf{i}-\mathbf{1}\right\lVert_1 \le b}$, the cost of the transformation scales as $\mathcal{O}\left(D \left[\frac{b}{D+1} + 1\right] N_\mathrm{sparse}\right)$, where $N_\mathrm{sparse}$ is the number of points on the sparse grid. We compare the cost of doing the transformation with sequential sums to the cost of other methods in the literature.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.