Ideal Gas Reference for Association and Dissociation Reactions: I. Basic Concepts

12 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Starting with a distance-based definition of molecules consisting of non-interacting atoms, which is in line with IUPAC terminology, we construct an ideal gas reference for chemical association and dissociation reactions. The corresponding ideal equations for equilibria and kinetics reveal the mathematical structure, known for real systems, in comprehensible clarity. The ideal gas reference corresponds to the limit of an entirely flat potential energy surface of the system where chemical equilibria and kinetics are determined by "unspecific" particle number combinatorics according to the reaction stoichiometry. The ideal equilibrium and rate constants provide a reference for the definition of excess equilibrium and rate constants of real reactions that quantify all "system-specific" contributions resulting from the particular shape of the potential energy surface. The ideal gas reference therefore enables a distinction between unspecific and system-specific aspects in the equilibria and kinetics of chemical association/dissociation reactions. Whereas conventional equilibrium and rate constants suffer from incompatibility between reactions of different stoichiometry, excess equilibrium and rate constants can be consistently compared across different reaction orders. Furthermore, whereas the conventional treatment requires an arbitrary specification of reference concentrations, e.g. at standard conditions, the ideal gas framework introduces an intrinsic concentration scale that is equal to the inverse of a molecular volume.

Keywords

ideal gas
molecular entity
association reaction
dissociation reaction
chemical equilibrium
chemical kinetics
reaction rate equation

Supplementary materials

Title
Description
Actions
Title
Supplementary Material: Ideal Gas Reference for Association and Dissociation Reactions: I. Basic Concepts
Description
Supplementary material for the calculation of relative thermal velocities.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.