Leveraging molecular structure and bioactivity with chemical language models for drug design

04 October 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Generative chemical language models (CLMs) can be used for de novo molecular structure generation. These CLMs learn from the structural information of known molecules to generate new ones. In this paper, we show that “hybrid” CLMs can additionally leverage the bioactivity information available for the training compounds. To computationally design ligands of phosphoinositide 3-kinase gamma (PI3Kγ), we created a large collection of virtual molecules with a generative CLM. This primary virtual compound library was further refined using a CLM-based classifier for bioactivity prediction. This second hybrid CLM was pretrained with patented molecular structures and fine-tuned with known PI3Kγ binders and non-binders by transfer learning. Several of the computer-generated molecular designs were commercially available, which allowed for fast prescreening and preliminary experimental validation. A new PI3Kγ ligand with sub-micromolar activity was identified. The results positively advocate hybrid CLMs for virtual compound screening and activity-focused molecular design in low-data situations.

Keywords

PI3Kγ
Kinase
Chemical language model
Drug discovery
Generative model
De novo design
Deep learning

Supplementary materials

Title
Description
Actions
Title
Supporting information
Description
Supplementary Tables and Figures.
Actions

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.