A Theory-guided X-ray Absorption Spectroscopy Approach for Identifying Active Sites in Atomically Dispersed Transition Metal Catalysts

22 September 2021, Version 1

Abstract

Atomically dispersed supported metal catalysts offer new properties and the benefits of maximized metal accessibility and utilization. The characterization of these materials, however, remains challenging. Using atomically-dispersed Pt supported on crystalline MgO (chosen for its well-defined bonding sites for Pt) as a prototypical example, in this work, we demonstrate how systematic density functional theory calculations (for assessing all the potentially stable Pt sites) combined with automated EXAFS analysis can lead to unbiased identification of isolated, surface-enveloped platinum cations as the catalytic species for CO oxidation. The catalyst has been characterized by atomic-resolution imaging, EXAFS, and HERFD-XANES spectroscopies; the proposed Pt site are in full agreement with experiment. This theory-guided workflow leads to rigorously determined structural models and provides a more detailed picture of the structure of the catalytically active sites than what is currently possible with conventional EXAFS analysis. As this approach is efficient and agnostic to the metal, support, and catalytic reaction, we posit that it will be of broad interest to the materials characterization and catalysis communities.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information including details of the EXAFS fits, scoring metrics, more details on the thermochemistry, and detailed plots of the HERFD simulations.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.