Single-Macromolecular Level Imaging of a Hydrogel Structure

21 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Hydrogels are promising materials for several applications, including cell scaffolds and artificial load-bearing substitutes (cartilages, ligaments, tendons, etc.). Direct observation of the nanoscale polymer network of hydrogels is essential in understanding its properties. However, imaging of individual network strands at the molecular level is not achieved yet due to the lack of suitable methods. Herein, for the first time, we developed a novel mineral-staining method and network fixation method for transmission electron microscopy observation to visualize the hydrogel network in its unperturbed conformation with nanometer resolution. Surface network observation indicates that the length of surface dangling chains, which play a major role in friction and wetting, can be estimated from the gel mesh size. Moreover, bulk observations reveals a hierarchical formation mechanism of gel heterogeneity. These observations have the great potential to advance gel science by providing comprehensive perspective that link bulk gel properties with nanoscale.

Keywords

Hydrogel
Direct observation
Transmission electron microscope
Double Network gel

Supplementary materials

Title
Description
Actions
Title
Supplementary video
Description
3D TEM movie of the supermacroporous PAMPS gel.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.