Stochastic Generalized Active Space Self-Consistent Field: Theory and Application

20 September 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

An algorithm to perform stochastic generalized active space calculations, Stochastic-GAS, is presented, that uses the Slater determinant based FCIQMC algorithm as configuration interaction eigensolver. Stochastic-GAS allows the construction and stochastic optimization of preselected truncated configuration interaction wave functions, either to reduce the computational costs of large active space wave function optimizations, or to probe the role of specific electron correlation pathways. As for the conventional GAS procedure, the preselection of the truncated wave function is based on the selection of multiple active subspaces while imposing restrictions on the interspace excitations. Both local and cumulative minimum and maximum occupation number constraints are supported by Stochastic-GAS. The occupation number constraints are efficiently encoded in precomputed probability distributions, using the precomputed heat bath algorithm, which removes nearly all runtime overheads of GAS. This strategy effectively allows the FCIQMC dynamics to a priori exclude electronic configurations that are not allowed by GAS restrictions. Stochastic-GAS reduced density matrices are stochastically sampled, allowing orbital relaxations via Stochastic-GASSCF, and direct evaluation of properties that can be extracted from density matrices, such as the spin expectation value. Three test case applications have been chosen to demonstrate the flexibility of Stochastic-GAS: (a) the Stochastic-GASSCF optimization of a stack of five benzene molecules, that shows the applicability of Stochastic-GAS towards fragment-based chemical systems; (b) an uncontracted stochastic MRCISD calculation that correlates 96 electrons and 159 molecular orbitals, and uses a large (32, 34) active space reference wave function for an Fe(II)-porphyrin model system, showing how GAS can be applied to systematically recover dynamic electron correlation, and how in the specific case of the Fe(II)-porphyrin dynamic correlation further differentially stabilizes the triplet over the quintet spin state; (c) the study of an Fe4S4 cluster's spin-ladder energetics via highly truncated stochastic-GAS wave functions, where we show how GAS can be applied to understand the competing spin-exchange and charge-transfer correlating mechanisms in stabilizing different spin-states.

Keywords

GASSCF
FCIQMC
wave function
transition metal complex
quantum chemistry

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
The Supporting_Information.pdf describes computational details and the other available files that are necessary to reproduce our results. In addition one finds tables of all results and a derivation of the working equation for the evaluation of the $\hat{S}^2$ expectation value.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.