Adding colour to mass spectra: Charge Determination Analysis (CHARDA) assigns charge state to every ion peak

17 September 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Traditionally, mass spectrometry (MS) output is the ion abundance plotted versus ionic mass-to-charge ratio m/z. While employing only commercially available equipment, Charge Determination Analysis (CHARDA) adds a third dimension to MS, estimating for individual peaks their charge states z, starting from z=1, and colour-coding z in m/z spectra. CHARDA combines the analysis of ion signal decay rates in the time-domain data (transients) in Fourier transform (FT) MS with the interrogation of mass defects of biopolymers. Being applied to individual isotopic peaks in a complex protein tandem (MS/MS) dataset, CHARDA facilitates charge state deconvolution of large ionic species in crowded regions, estimating z even in the absence of isotopic distribution (e.g., for monoisotopic mass spectra). CHARDA is fast, robust and consistent with conventional FT MS and FT MS/MS data acquisition procedures. An effective charge state resolution Rz≥6 is obtained, with potential for further improvements.

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.