Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been causing the COVID-19 pandemic resulting in several million death were reported. Numerous investigations have been carried out to discover a compound that can inhibit the biological activity of SARS-CoV-2 main protease, which is an enzyme related to the viral replication. Among these, PF-07321332 is currently under clinical trial for COVID-19 therapy. Therefore, in this work, atomistic and electronic simulations were performed to unravel the binding and covalent inhibition mechanism of the compound to Mpro. Initially, 5 µs of steered-molecular dynamics simulations were carried out to evaluate the ligand-binding process to SARS-CoV-2 Mpro. Successfully generated bound state between two molecules showed the important role of the PF-07321332 pyrrolidinyl group and the residues Glu166 and Gln189 in the ligand-binding process. Moreover, from the MD-refined structure, quantum mechanics/molecular mechanics (QM/MM) calculations were carried out to unravel the reaction mechanism for the formation of thioimidate product from SARS-CoV-2 Mpro and PF07321332 inhibitor. We found that the catalytic triad Cys145–His41–Asp187 of SARS-CoV-2 Mpro plays important role in the activation of PF-07321332 covalent inhibitor, which renders the deprotonation of Cys145 and, thus, facilitates further reaction. Our results are definitely beneficial for better understanding on the inhibition mechanism and designing new effective inhibitors for SARS-CoV-2 Mpro.