Employing artificial neural networks to find reaction coordinates and pathways for self-assembly

31 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Capturing the autonomous self-assembly of molecular building blocks in computer simulations is a persistent challenge, requiring to model complex interactions and to access long time scales. Advanced sampling methods allow to bridge these time scales but typically require to construct accurate low-dimensional representations of the transition pathways. In this work, we demonstrate for the self-assembly of two single-stranded DNA fragments into a ring-like structure how autoencoder architectures based on unsupervised neural networks can be employed to reliably expose transition pathways and to provide a suitable low-dimensional representation. The assembly occurs as a two-step process through two distinct half-bound states, which are correctly identified by the neural net. We exploit this latent space representation to construct a Markov state model for predicting the four molecular conformations and transition rates. Our work opens up new avenues for the computational modeling of multi-step and hierarchical self-assembly, which has proven challenging so far.

Keywords

DNA
self-assembly
molecular dynamics
Markov state model
machine learning
neural networks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.