Abstract
Silicon-based anodes with lithium ions as charge carriers have the highest predicted charge density of 3579 mA h g-1 (for Li15Si4). Contemporary electrodes do not achieve this theoretical value largely because conventional production paradigms rely on the mixing of weakly coordinated components. In this paper, a semi-conductive triazine-based graphdiyne polymer network is grown around silicon nanoparticles directly on the current collector, a copper sheet. The porous, semi-conducting organic framework (i) adheres to the current collector on which it grows via cooperative van der Waals interactions, (ii) acts effectively as conductor for electrical charges and binder of silicon nanoparticles via conjugated, covalent bonds, and (iii) enables selective transport of electrolyte and Li-ions through pores of defined size. The resulting anode shows extraordinarily high capacity at the theoretical limit of fully lithiated silicon. Finally, we combine our anodes in proof-of-concept battery assemblies using a conventional cathode, NCM811.
Supplementary materials
Title
Appendix 1 Density calculation
Description
Appendix 1 Density calculation
Actions
Title
20210812 LiAnMat SI
Description
Supplementary Information
Actions
Supplementary weblinks
Title
ANODE AND PROCESS FOR ITS MANUFACTURE
Description
The Patent “Anode und Verfahren zu ihrer Herstellung” (Anode and process for its manufacture) has been granted as DE: 10 2019 110 450 and IPC: H01M 4/137.
Actions
View