Intramolecular Charge Transfer in the Azathioprine Prodrug Quenches Intersystem Crossing to the Reactive Triplet State in 6-Mercaptopurine

30 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The thiopurine prodrugs 6-mercaptopurine and azathioprine are among the world’s essential medications for acute lymphoblastic leukemia, immunosuppression, and several autoimmune conditions. Thiopurine prodrugs are efficient UVA absorbers and singlet oxygen generators and the long-term treatment with these prodrugs correlates with a high incidence of sunlight-induced skin cancer in patients. In this contribution, we show that the electronic relaxation mechanisms and photochemical properties of azathioprine are remarkably different from those of 6-mercaptopurine upon absorption of UVA radiation. UVA excitation of 6-mercaptopurine results in nearly 100% triplet yield and up to 30% singlet oxygen generation, whereas excitation of azathioprine with UVA leads to triplet yields of 15 to 3% depending on pH of the aqueous solution and less than 1% singlet oxygen generation. While photoexcitation of 6-mercaptopurine and other thiopurine prodrugs can facilitate oxidatively generated cell damage, azathioprine’s poor photosensitization ability reveals the use of interchromophoric charge transfer interactions for the molecular design of photostable prodrugs exhibiting a remarkable reduction in photocytotoxic side effects before drug metabolization.

Keywords

thiobases
pro-drugs
side effects
photocytoxicity
electronic relaxation mechanism
excited states
transient absorption

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.