Abstract
Combinatorial methods enable the synthesis of chemical libraries on scales of millions to billions of compounds, but the ability to efficiently screen and sequence such large libraries has remained a major bottleneck for molecular discovery. We developed a novel technology for screening and sequencing libraries of synthetic molecules of up to a billion compounds in size. This platform utilizes the Fiber-optic Array Scanning Technology (FAST) to screen bead-based libraries of synthetic compounds at a rate of 5 million compounds per minute (~83,000 Hz). This ultra-high-throughput screening platform has been used to screen libraries of synthetic “self-readable” non-natural polymers that can be sequenced at femtomole scale by chemical fragmentation and high-resolution mass spectrometry. The versatility and throughput of the platform was demonstrated by screening two libraries of non-natural polyamide polymers with sizes of 1.77M and 1B compounds against the protein targets K-Ras, asialoglycoprotein receptor 1 (ASGPR), IL-6, IL 6 receptor (IL-6R) and TNFα. Hits with low nanomolar binding affinities were found against all targets, including competitive inhibitors of K-Ras binding to Raf and functionally active uptake ligands for ASGPR facilitating intracellular delivery of a non-glycan ligand.
Supplementary materials
Title
Supplementary Information
Description
Supplementary information from the manuscript includes additional tables/figures, experimental procedures, detailed synthetic methods, analytical data and references.
Actions