Unveiling the role of chemical and electronic structure in plasmon-assisted homolysis of alkoxyamines

24 August 2021, Version 1

Abstract

The excitation of localized plasmon resonance on nanoparticles followed by the interaction with organic molecules leads to new pathways of chemical reactions. Although a number of physical factors (temperature, illumination regime, type of nanoparticles, etc.) are affecting this process, the role of the chemical factors is underestimated. Challenging this assumption, here we studied the kinetic of plasmon-induced homolysis of five alkoxyamines (AAs) with different chemical and electronic structures using electron paramagnetic resonance (EPR). The kinetic data revealed the dependence of plasmonic homolysis rate constant (kd) with the HOMO energy of AAs, which cannot be described by the kinetic parameters derived from thermal homolysis experiments. The observed trend in kd allowed to suggest the key role of intramolecular excitation mechanism supported by the TDFDT calculations, additional spectroscopic characterization, and control experiments. Our work sheds light on the role of the electronic structure of organic molecules in plasmonic chemistry.

Keywords

plasmon
homolysis
alkoxyamines
plasmon-driven reaction
photocatalysis

Supplementary materials

Title
Description
Actions
Title
Supporting_Information
Description
The supporting information for manuscript "Unveiling the role of chemical and electronic structure in plasmon-assisted homolysis of alkoxyamines"
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.