Boosting Palladium Catalyzed Aryl–Nitro Bond Activation Reaction by Understanding the Electronic, Electrostatic and Polarization Effect: A Computational Study from Basic Understanding to Ligand Design

18 August 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Although cross coupling reaction with nitroarene as the electrophilic partner has gained high interest recently, the palladium catalyzed aryl–nitro bond activation reaction still requires rather high temperature and hash condition. In this work, based on Nakao’s nitrogen heterocyclic carbene (NHC) ligand, we systematically explored the substituent effect on the oxidative addition step, the known rate determining step of the whole reaction, by density functional theory (DFT) calculation. The key aryl ring on the ligand skeleton, namely Ring A, acts as a π-donor and stabilizes the palladium center of the transition state, as shown by Extended Transition State Natural Orbital of Chemical Valance (ETS-NOCV) analysis, and thus an electron-rich Ring A is expected to lower the barrier. On the other hand, however, the polarization and electrostatic effects were shown to be as or even more important, although they were often ignored before. These effects originate from through-space interaction with the nitro group in the resting state, and the overall effect is that any polarizable or partly negative group nearby the ortho- or meta¬- site of Ring A is harmful for the reaction. Based on these discoveries, we proposed a list of guidelines for successful ligand development, and designed several new ligands. These ligands exhibit significantly lower barrier than the reported Nakao’s ligand by as large as ~5 kcal/mol in both gas phase and solvation, and might be good candidates for further experimental study.

Keywords

Bond activation
DFT calculation
Palladium catalysis
Substituent effect
Rational ligand design
Polarization effect

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supplementary Table, energetics and geometries for all the species involved.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.