Assembling Native Elementary Cellulose Nanofibrils via a Reversible and Regioselective Surface Functionalization

17 August 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Selective surface modification of bio-based fibers affords effective individualization and functionalization into nanomaterials, as shown by the TEMPO-mediated oxidation. However, such route leads to changes of the native surface chemistry, affecting interparticle interactions and limiting the full exploitation of the intrinsic supermaterial properties. Here we introduce a methodology to extract elementary cellulose fibrils by treatment of biomass with N-succinylimidazole, achieving spatially confined (regioselective modification of C6-OH) and dynamic surface functionalization. No polymer degradation or crosslinking nor changes in crystallinity occur under the mild conditions of the process and the modification is fully reversible, which offers a significant opportunity for the reconstitution of the interfaces back to the native states, chemically and structurally. Consequently, access to 3D structuring of native elementary cellulose fibrils is made possible with the same supramolecular features as the bio-synthesized fibers, which is required to unlock the full potential of cellulose as a sustainable building block.

Keywords

Indivdualized nanofibers
reversible succinylation
nanocellulose processing
TEMPO-oxidation
functional biocolloids
imidazole chemistry

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Supporting information
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.