Effects of molecular design parameters on plasticizer performance in poly(vinyl chloride): a comprehensive molecular simulation study

18 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Using all-atom molecular simulation, a wide range of plasticizers for poly(vinyl chlorid) (PVC), including ortho- and tere-phthalates, trimellitates, citrates, and various aliphatic dicarboxylates, are systematically studied. We focus on the effects of plasticizer molecular structure on its performance, as measured by performance metrics including its thermodynamic compatibility with PVC, effectiveness of reducing the material's Young's modulus, and migration rate in the PVC matrix. The wide variety of plasticizer types covered in the study allows us to investigate the effects of seven molecular design parameters. Experimental findings about the effects of plasticizer molecular design are also compiled from various literature sources and reviewed. Comparison with experiments establishes the reliability of our simulation predictions. The study aims to provide a comprehensive set of guidelines for the selection and design of high-performance plasticizers at the molecular level. Molecular mechanisms for how each design parameter influences plasticizer performance metrics are also discussed. Moreover, we report a nontrivial dependence of plasticizer migration rate on temperature, which reconciles seemingly conflicting experimental reports on the migration tendency of different plasticizers.

Keywords

PVC
plasticizers
molecular simulation
additive technology
diffusion in polymers
molecular design
mechanical properties
blending
compounding

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.