Abstract
Di-iron hydrogenases are a class of enzymes that are capable of reducing protons to form molecular hydrogen with high efficiency. In addition to the catalytic site, these enzymes have evolved dedicated pathways to transport protons and electrons to the reaction center. Here, we present a detailed study of the most likely proton trans- fer pathway in such an enzyme using QM/MM molecular dynamics simulations. The protons are transported through a channel lined out from the protein exterior to the di-iron active site, by a series of hydrogen-bonded, weakly acidic or basic, amino-acids and two incorporated water molecules. Proton transport takes place via a ”hole” mech- anism, rather than an excess proton mechanism, the free energy landscape of which is remarkably flat, with a highest transition state barrier of only 5 kcal/mol. These results confirm our previous assumptions that proton transport is not rate limiting in the H2 formation activity and that cystene C299 may be considered protonated at physiological pH conditions. Detailed understanding of this proton transport may aid in the ongoing attempts to design artificial bio-mimetic hydrogenases for hydrogen fuel production.