Speeding up quantum dissipative dynamics of open systems with kernel methods

13 August 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The future forecasting ability of machine learning (ML) makes ML a promising tool for predicting long-time quantum dissipative dynamics of open systems. In this Article, we employ nonparametric machine learning algorithm (kernel ridge regression as a representative of the kernel methods) to study the quantum dissipative dynamics of the widely-used spin-boson model. Our ML model takes short-time dynamics as an input and is used for fast propagation of the long-time dynamics, greatly reducing the computational effort in comparison with the traditional approaches. Presented results show that the ML model performs well in both symmetric and asymmetric spin-boson models. Our approach is not limited to spin-boson model and can be extended to complex systems.

Keywords

machine learning
artificial intelligence
quantum dynamics
kernel method
kernel ridge regression
open quantum system
quantum dissipative dynamics
spin-boson model
hierarchical equations of motion

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.