Studies of Catalyst-Controlled Regioselective Acetalization and Its Application to Single-Pot Synthesis of Differentially Protected Saccharides.

11 August 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

This article describes the studies on regioselective acetal protection of monosaccharide-based diols using chiral phos-phoric acids (CPAs) and their immobilized polymeric variants, (R)-Ad-TRIP-PS and (S)-SPINOL-PS as the catalysts. These catalyst-controlled regioselective acetalizations were found to proceed with high regioselectivities (up to >25:1 rr) on various D-glucose, D-galactose, D-mannose and L-fucose derived 1,2-diols, and could be carried in a re-giodivergent fashion depending on the choice of the chiral catalyst. The polymeric catalysts were conveniently recy-cled and reused multiple times for gram scale functionalizations with catalytic loading as low as 0.1 mol%, and their performance was often found to be superior to the performance of their monomeric variants. These regioselective CPA-catalyzed acetalizations were successfully combined with common hydroxyl group functionalizations as single-pot telescoped procedures to produce 34 regioisomerically pure differentially protected mono- and disaccharide de-rivatives. To further demonstrate the utility of the polymeric catalysts, the same batch of (R)-Ad-TRIP-PS catalyst was recycled and reused to accomplish single-pot gram-scale syntheses of 6 differentially protected D-glucose derivatives. The subsequent exploration of the reaction mechanism using NMR studies of deuterated and nondeuterated sub-strates revealed that low-temperature acetalizations happen via syn-addition mechanism, and that the reaction regi-oselectivity exhibits strong dependence on the temperature. The computational studies indicate complex tempera-ture-dependent interplay of two reaction mechanisms, one involving an anomeric phosphate intermediate and an-other via concerted asynchronous formation of acetal that results in syn-addition products. The computational models also explain the steric factors responsible for the observed C2-selectivities and are consistent with experimentally observed selectivity trends.

Keywords

chiral phosphoric acid
immobilized catalyst
carbohydrates
site-selective
regioselective
protection
one-pot
single pot
telescoped
computational studies
reaction mechanism
synthesis
acetal
methoxypropyl
methoxycyclohexyl
glycosylation
glucose
mannose
galactose
sugars

Supplementary materials

Title
Description
Actions
Title
SI Combined
Description
This is SI and Spectral data for the manuscript.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.