High Resolution Photoelectron Spectroscopy of Vibrationally Excited OHˉ

10 August 2021, Version 3
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

The effect of vibrational pre-excitation of anions on their photoelectron spectra is explored, combining slow photoelectron velocity-map imaging of cryogenically cooled anions (cryo-SEVI) with tunable IR radiation to pre-excite the anions. This new IR cryo-SEVI method is applied to OHˉ as a test system, where the R(0) transition of the hydroxyl anion (3591.53 cm-1) is pumped. Vibrational excitation induces a 30% depletion in photodetachment signal from the v = 0, J = 0 ground state of the anion and the appearance of all five allowed photodetachment transitions from the v = 1, J = 1 rovibrational level, each with peak widths between 1-2 cm-1. By scanning the IR laser, IR cryo-SEVI can also serve as a novel action technique to obtain the vibrational spectrum of OHˉ, giving an experimental value for the R(0) transition of 3591(1.2) cm-1.

Keywords

Photoelectron Spectroscopy
Radicals
Infrared Spectroscopy

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.