Drug-target affinity prediction using applicability domain based on data density

06 August 2021, Version 2
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

In the pursuit of research and development of drug discovery, the computational prediction of the target affinity of a drug candidate is useful for screening compounds at an early stage and for verifying the binding potential to an unknown target. The chemogenomics-based method has attracted increased attention as it integrates information pertaining to the drug and target to predict drug-target affinity (DTA). However, the compound and target spaces are vast, and without sufficient training data, proper DTA prediction is not possible. If a DTA prediction is made in this situation, it will potentially lead to false predictions. In this study, we propose a DTA prediction method that can advise whether/when there are insufficient samples in the compound/target spaces based on the concept of the applicability domain (AD) and the data density of the training dataset. AD indicates a data region in which a machine learning model can make reliable predictions. By preclassifying the samples to be predicted by the constructed AD into those within (In-AD) and those outside the AD (Out-AD), we can determine whether a reasonable prediction can be made for these samples. The results of the evaluation experiments based on the use of three different public datasets showed that the AD constructed by the k-nearest neighbor (k-NN) method worked well, i.e., the prediction accuracy of the samples classified by the AD as Out-AD was low, while the prediction accuracy of the samples classified by the AD as In-AD was high.

Keywords

drug-target affinity (DTA) prediction
applicability domain (AD)
chemogenomics
data density
k-nearest neighbor (k-NN)

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.