Abstract
During solvent extraction of rare earth ions, an aqueous electrolyte solution is placed in contact with an immiscible organic solution of extractants to enable extractant-facilitated transport of ions into the organic solvent. Although ex-perimental methodologies such as x-ray and neutron scattering have been applied to characterize ion-extractant complexes, identifying the site of ion-extractant complexation has proven challenging. Here, we use tensiometry and surface-sensitive x-ray scattering to study the surface of aqueous solutions of lanthanide chlorides and the water-soluble extractant bis(2-ethylhexyl) phosphate (HDEHP), in the absence of a coexisting organic solvent. These studies restrict interactions of HDEHP with trivalent lanthanide ions to the aqueous phase and the liquid-vapor interface, allowing us to explore the consequences that one or the other is the site of ion-extractant complexation. Unexpectedly, we find that light lanthanides preferentially occupy the liquid-vapor interface, with an overwhelming preference for a light lanthanide, Nd, when present in a mixture with a heavy lanthanide, Er. This contradicts our expectation that heavy lanthanides should have a higher interfacial density since they are preferentially extracted by HDEHP in the presence of an organic phase. These results reveal the antagonistic role played by ion-extractant complexation within the aqueous phase and clarify the potential advantages of water-insoluble extractants that interact with ions primarily at the interface during the process of solvent extraction.
Supplementary materials
Title
Supplementary Information
Description
One pdf file containing 7 figures and 3 tables: experimental details – materials, solution preparation; experimental methodology – surface tension (including equilibrium values and CMC measurements), x-ray instrumentation and Langmuir trough, x-ray reflectivity (including zero-roughness profiles), XFNTR (including spectral analysis, calibration measurements, interfacial density values, time-dependent data); MD simulation methods.
Actions