Topology-Mediated Enhanced Polaron Coherence in Covalent Organic Frameworks

28 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

We employ the Holstein model for polarons to investigate the relationship among defects, topology, Coulomb trapping, and polaron delocalization in covalent organic frameworks (COFs). We find that intra-sheet topological connectivity and pi-column density can override disorder-induced deep traps and significantly enhance polaron migration by several orders of magnitude in good agreement with recent experimental observations. The combination of percolation networks and micropores makes trigonal COFs ideally suited for charge transport followed by kagome/tetragonal, and hexagonal structures. By comparing the polaron spectral signatures and coherence numbers of large 3D frameworks having a maximum of 180 coupled chromophores, we show that controlling nanoscale defects and the location of the counter anion is critical for the design of new COF-based materials yielding higher mobilities. Our analysis establishes design strategies for enhanced conductivity in COFs which can be readily generalized to other classes of conductive materials such as metal-organic frameworks and perovskites.

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Details of the Holstein Hamiltonian, infrared absorption, coherence function, and additional comparisons with experimental data.
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.