Engineered Substrates Reveal Species-Specific Inorganic Cues for Coral Larval Settlement

10 August 2021, Version 1

Abstract

The widespread loss of stony reef-building coral populations has been compounded by pervasive recruitment failure, i.e., the low or absent settlement and survival of coral juveniles. To combat global coral reef stressors and rebuild coral communities, restoration practitioners have developed workflows to rear and settle vulnerable coral larvae in the laboratory and subsequently outplant settled juveniles back to natural and artificial reefs. These workflows often make use of the natural biochemical settlement cues present in crustose coralline algae (CCA), which can be presented to swimming larvae as extracts, fragments, or live algal sheets to induce settlement. In this work, we investigated the potential for inorganic chemical cues to complement these known biochemical effects. We designed settlement substrates made from lime mortar (CaCO3) and varied their composition with the use of synthetic and mineral additives, including sands, glasses, and alkaline earth carbonates. In experiments with larvae of two Caribbean coral species, Acropora palmata (elkhorn coral) and Diploria labyrinthiformis (grooved brain coral), we saw additive-specific settlement preferences (>10-fold settlement increase) in the absence of any external biochemical cues. Interestingly, these settlement trends were independent of bulk surface properties such as surface roughness and wettability. Instead, our results suggest that not only can settling coral larvae sense and positively respond to soluble inorganic materials, but that they can also detect localized topographical features more than an order of magnitude smaller than their body width. Our findings open a new area of research in coral reef restoration, in which engineered substrates can be designed with a combination of organic and inorganic additives to increase larval settlement, and perhaps also improve post-settlement growth, mineralization, and defense.

Keywords

Larval settlement
Coral propagation
Coral reef restoration
Chemical cues
Microtopography
Crystallization

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Additional methods, results, and material data for the paper, "Engineered Substrates Reveal Species-Specific Inorganic Cues for Coral Larval Settlement."
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.