Abstract
The glucagon-like peptide-1 receptor (GLP1R) is expressed in peripheral tissues and the brain, where it exerts pleiotropic actions on metabolic and inflammatory processes. Detection and visualization of GLP1R remains challenging, partly due to a lack of validated reagents. Previously, we generated LUXendins, antagonistic red and far-red fluorescent probes for specific labeling of GLP1R in live and fixed cells/tissue. We now extend this concept to the green and near-infrared color ranges by synthesizing and testing LUXendin492, LUXendin551, LUXendin615 and LUXendin762. All four probes brightly and specifically label GLP1R in cells and pancreatic islets. Further, LUXendin551 acts as chemical beta cell reporter in preclinical rodent models, while LUXendin762 allows non-invasive imaging, highlighting differentially-accessible GLP1R populations. We thus expand the color palette of LUXendins to seven different spectra, opening up a range of experiments using widefield microscopy available in most labs through super-resolution imaging and whole animal imaging. With this, we expect that LUXendins will continue to generate novel and specific insight into GLP1R biology.
Supplementary materials
Title
Supplementary Information
Description
Contains details for chemical synthesis and characterization.
Actions