De novo drug design using reinforcement learning with graph-based deep generative models

26 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Machine learning methods have proven to be effective tools for molecular design, allowing for efficient exploration of the vast chemical space via deep molecular generative models. Here, we propose a graph-based deep generative model for de novo molecular design using reinforcement learning. We demonstrate how the reinforcement learning framework can successfully fine-tune the generative model towards molecules with various desired sets of properties, even when few molecules have the goal attributes initially. We explored the following tasks: decreasing/increasing the size of generated molecules, increasing their drug-likeness, and increasing protein-binding activity. Using our model, we are able to generate 95% predicted active compounds for a common benchmarking task, outperforming previously reported methods on this metric.

Supplementary weblinks

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.