Trapping the Transition State in a [2,3]-Sigmatropic Rearrangement by Applying Pressure

26 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Transition states are of central importance in chemistry. While they are, by definition, transient species, it has been shown before that it is possible to “trap” transition states by applying stretching forces. We here demonstrate that the task of transforming a transition state into a minimum on the potential energy surface can be achieved by using hydrostatic pressure. We apply the computational eXtended Hydrostatic Compression Force Field (X- HCFF) approach to the educt of a [2,3]-sigmatropic rearrangement in both static and dynamic calculations and find that the five-membered cyclic transition state of this reaction becomes a minimum at pressures in the range between 100 and 150 GPa. Slow decompression leads to a 70:30 mix of the product and the educt of the sigmatropic rearrangement. Our findings are discussed in terms of geometric parameters and electronic rearrangements throughout the reaction. We speculate that the trapping of transition states by using pressure is generally possible if the transition state of a chemical reaction has a more condensed geometry than both the educt and the product, which paves the way for new ways of initiating chemical reactions.

Keywords

Density Functional Theory
Pressure
Mislow-Evans rearrangement
Sigmatropic rearrangement
Transition states

Supplementary materials

Title
Description
Actions
Title
Supporting Information
Description
Computational details, supplementary data, geometries at the stationary points
Actions

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.