Abstract
Owing to advancements in computing power and improvements in automation of modelling, high-throughput virtual screening (HTVS) has increasingly been used for materials data generation. Here, we applied a HTVS-guided experimental study for the large-scale exploration of quinone-like anolytes for aqueous redox flow batteries (ARFBs). This includes the design of a focused virtual chemical library inspired by small colorant molecules, quantum chemical prediction of redox properties, machine learning prediction of aqueous solubility, automated search for commercial availability on vendor databases, and electrochemical characterization of the most promising compounds. Screening efforts in a chemical space of 3,257 redox pairs led to 205 predicted candidates with higher solubility and lower redox potential than that of the state-of-the-art anthraquinone-2,7- disulfonic acid (AQDS) anolyte used in ARFBs. Through the electrochemical studies on the commercially available compounds, we identified the molecules that show good performance in an ARFB setup. Among them, indigo trisulfonate [Indigo-3(SO3H)] showed higher solubility, capacity retention, and coulombic efficiency than AQDS and its predecessors. The data-driven material design methodology presented here is flexible and applicable for the future exploration of small compounds for electrochemical energy storage.
Supplementary materials
Title
Data-driven discovery of small electroactive molecules for energy storage in aqueous redox flow batteries
Description
(Fig S1)Information flow for the automated molecule searches performed on the ZINC database; (Fig S2) The outlier molecules; (Fig S3 and S4) The cell cyclic voltammetry of J, K, and AQDS; (Fig S5)A simplified representation of cell configuration for Indigo/AQDS-bromine redox flow battery; (Table S1) The list of 205 quinone-like compounds as promising anolytes for ARFBs; (Table S2) The solubility and water instability data for the full list of experimented molecules (A-O).
Actions