Extensive High-Accuracy Thermochemistry and Group Additivity Values for Halocarbon Combustion Modeling

22 July 2021, Version 1
This content is a preprint and has not undergone peer review at the time of posting.

Abstract

Standard enthalpies, entropies, and heat capacities are calculated for 16,813 halocarbons using an automated high-fidelity thermochemistry workflow. This workflow generates conformers at density functional tight binding (DFTB) level, optimizes geometries, calculates harmonic frequencies, and performs 1D hindered rotor scans at DFT level, and computes electronic energies at G4 level. The computed enthalpies of formation for 400 molecules show good agreement with literature references, but the majority of the calculated species have no reference in the literature. Thus, this work presents the most accurate thermochemistry for many halocarbons to date. This new data set is used to train an extensive ensemble of group additivity values and hydrogen bond increment groups within the Reaction Mechanism Generator (RMG) framework. On average, the new group values estimate standard enthalpies for halogenated hydrocarbons within 3 kcal/mol of their G4 values. A significant contribution towards automated mechanism generation of halocarbon combustion, this research provides thermochemical data for thousands of novel halogenated species and presents a self-consistent set of halogen group additivity values.

Keywords

Thermochemistry
halocarbons
Group Additivity
halogenated hydrocarbons

Comments

Comments are not moderated before they are posted, but they can be removed by the site moderators if they are found to be in contravention of our Commenting Policy [opens in a new tab] - please read this policy before you post. Comments should be used for scholarly discussion of the content in question. You can find more information about how to use the commenting feature here [opens in a new tab] .
This site is protected by reCAPTCHA and the Google Privacy Policy [opens in a new tab] and Terms of Service [opens in a new tab] apply.